跳转至

YOLO目标检测介绍及实现示例

1. 原理

我们都知道,yolo这些深度学习检测算法都是在python下用pytorchtf框架这些训练的,训练得到的是pt或者weight权重文件,这些是算法开发人员做的事情,如何让算法的检测精度更高、速度更快。

但在工程化的时候,一般还是要用C++实现的,OpenCV不只是能进行图像的基本处理(以前我太肤浅了),它还有很多能处理深度学习的模块,比如DNN模块就支持调用多种框架下训练的权重文件。

下面就在VS2017+OpenCV454环境下进行演示。可以选择4种yolo变体,可以检测图片或视频。
(代码参考这位博主,以下是集成和演示)

2. 图片检测程序

运行代码前,请先配置好VS和OpenCV环境,然后准备好yolo相关权重文件(cfg+weight)。

首先定义yolo.h头文件:

#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/dnn.hpp> //调用dnn模块
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>

using namespace cv;
using namespace dnn;
using namespace std;

//结构体定义:网络配置参数
struct Net\_config
{
    float confThreshold; // 置信度阈值
    float nmsThreshold;  // 非极大值抑制(重叠率)阈值
    int inpWidth;  
    int inpHeight; 
    string classesFile; //类别文件名
    string modelConfiguration;  //模型配置文件
    string modelWeights;    //模型权重
    string netname; //模型名称
};

//定义yolo类
class YOLO
{
    public:
        YOLO(Net_config config);
        void detect(Mat& frame);    //检测函数
    private:
        float confThreshold;    //类别置信度阈值
        float nmsThreshold;     //重叠率阈值
        int inpWidth;   //图片宽度
        int inpHeight;  //图片高度
        char netname[20];   //网络名称
        vector<string> classes; //存储类别的数组
        Net net;    //深度学习模型读取
        void postprocess(Mat& frame, const vector<Mat>& outs);  //后处理函数
        void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame);   //画框
};

//定义网络数组
Net_config yolo_nets[4] = {
    {0.5, 0.4, 416, 416,"coco.names", "yolov3/yolov3.cfg", "yolov3/yolov3.weights", "yolov3"},
    {0.5, 0.4, 608, 608,"coco.names", "yolov4/yolov4-tiny.cfg", "yolov4/yolov4-tiny.weights", "yolov4-tiny"},
    {0.5, 0.4, 320, 320,"coco.names", "yolo-fastest/yolo-fastest-xl.cfg", "yolo-fastest/yolo-fastest-xl.weights", "yolo-fastest"},
    {0.5, 0.4, 320, 320,"coco.names", "yolobile/csdarknet53s-panet-spp.cfg", "yolobile/yolobile.weights", "yolobile"}
};

然后进入main主程序:

#include "yolo.h"

//网络配置构造函数
YOLO::YOLO(Net_config config)
{
    cout << "Net use " << config.netname << endl;
    this->confThreshold = config.confThreshold;
    this->nmsThreshold = config.nmsThreshold;
    this->inpWidth = config.inpWidth;
    this->inpHeight = config.inpHeight;
    strcpy\_s(this->netname, config.netname.c\_str());

    ifstream ifs(config.classesFile.c\_str());
    string line;
    while (getline(ifs, line)) this->classes.push\_back(line);

    this->net = readNetFromDarknet(config.modelConfiguration, config.modelWeights);
    this->net.setPreferableBackend(DNN_BACKEND_OPENCV);
    this->net.setPreferableTarget(DNN_TARGET_CPU);
}

//后处理
void YOLO::postprocess(Mat& frame, const vector<Mat>& outs)   // Remove the bounding boxes with low confidence using non-maxima suppression
{
    vector<int> classIds;   //类别
    vector<float> confidences;  //置信度
    vector<Rect> boxes; //框

    for (size_t i = 0; i < outs.size(); ++i)
    {
        // Scan through all the bounding boxes output from the network and keep only the
        // ones with high confidence scores. Assign the box's class label as the class
        // with the highest score for the box.
        float\* data = (float\*)outs[i].data;
        for (int j = 0; j < outs[i].rows; ++j, data += outs[i].cols)
        {
            Mat scores = outs[i].row(j).colRange(5, outs[i].cols);
            Point classIdPoint;
            double confidence;
            // Get the value and location of the maximum score
            minMaxLoc(scores, 0, &confidence, 0, &classIdPoint);
            //当置信度大于阈值
            if (confidence > this->confThreshold)
            {
                int centerX = (int)(data[0] \* frame.cols);
                int centerY = (int)(data[1] \* frame.rows);
                int width = (int)(data[2] \* frame.cols);
                int height = (int)(data[3] \* frame.rows);
                int left = centerX - width / 2;
                int top = centerY - height / 2;

                classIds.push\_back(classIdPoint.x);
                confidences.push\_back((float)confidence);
                boxes.push\_back(Rect(left, top, width, height));
            }
        }
    }

    // Perform non maximum suppression to eliminate redundant overlapping boxes with
    // lower confidences
    vector<int> indices;
    NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
    for (size_t i = 0; i < indices.size(); ++i)
    {
        int idx = indices[i];
        Rect box = boxes[idx];
        this->drawPred(classIds[idx], confidences[idx], box.x, box.y,
            box.x + box.width, box.y + box.height, frame);
    }
}

//画预测框
void YOLO::drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat& frame)   // Draw the predicted bounding box
{
    //Draw a rectangle displaying the bounding box 画框
    rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 3);

    //Get the label for the class name and its confidence 打标签
    string label = format("%.2f", conf);
    if (!this->classes.empty())
    {
        CV\_Assert(classId < (int)this->classes.size());
        label = this->classes[classId] + ":" + label;
    }

    //Display the label at the top of the bounding box 展示标签
    int baseLine;
    Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
    top = max(top, labelSize.height);
    //rectangle(frame, Point(left, top - int(1.5 \* labelSize.height)), Point(left + int(1.5 \* labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
    putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
}

//detect检测
void YOLO::detect(Mat& frame)
{
    Mat blob;   //blob预处理
    blobFromImage(frame, blob, 1 / 255.0, Size(this->inpWidth, this->inpHeight), Scalar(0, 0, 0), true, false);
    this->net.setInput(blob);
    vector<Mat> outs;
    this->net.forward(outs, this->net.getUnconnectedOutLayersNames());  //前向处理
    this->postprocess(frame, outs); //后处理

    vector<double> layersTimes;
    double freq = getTickFrequency() / 1000;
    double t = net.getPerfProfile(layersTimes) / freq;
    string label = format("%s Inference time : %.2f ms", this->netname, t);
    putText(frame, label, Point(0, 30), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 0, 255), 2);
    //imwrite(format("%s\_out.jpg", this->netname), frame);
}

//main入口
int main()
{
    YOLO yolo\_model(yolo_nets[2]); //选择网络

    //1.图片检测
    string imgpath = "dog.jpg";
    Mat srcimg = imread(imgpath);   //读取照片
    yolo_model.detect(srcimg);  //调用检测程序

    //图片检测界面
    static const string kWinName = "Deep learning object detection in OpenCV C++";
    namedWindow(kWinName, WINDOW_NORMAL);
    imshow(kWinName, srcimg);
    waitKey(0);
    destroyAllWindows();


}

运行结果如下:

在这里插入图片描述

3. 视频检测程序

要调用视频,只需在main函数中加入:

    //2.视频检测/实时摄像头
    VideoCapture capture("test.avi");   //0
    Mat frame;
    while (true) {
        int ret = capture.read(frame);
        if (!ret) {
            break;
        }
        //imshow("input", frame); //显示原视频
        yolo_model.detect(frame);   //调用process
        static const string kWinName = "Deep learning object detection in OpenCV C++";
        namedWindow(kWinName, WINDOW_NORMAL);
        imshow(kWinName, frame);

        char c = waitKey(5);
        if (c == 27) {
            break;
        }
    }

运行结果如下:

在这里插入图片描述

其他

还有一个用SSD MobileNet检测的示例:

项目Github地址:https://github.com/ChiekoN/OpenCV_SSD_MobileNet

#编译
mkdir build && cd build
cmake ..
make
./ssd_obj_detect

基于ROS的人脸检测的示例:

项目Github地址:https://github.com/1417265678/robot_vision

# 先起相机节点
roslaunch robot_vision usb_cam.launch
# 检测节点
roslaunch robot_vision face_detector.launch

在这里插入图片描述

Darknet-Yolo环境配置及运行测试(Ubuntu 18.04)

创建工作空间catkin_ws/src,下载Darknet-yolo代码包,执行编译catkin_make。

打开摄像头数据,如上。

运行算法测试:roslaunch darknet_ros darknet_ros.launch

即可在rqt_image_view上查看。

NanoDet-PyTorch环境配置及运行测试

近几年目标检测模型发展很快,最近接触到一款智能小车用到了Nanodet这种目标检测模型,便拿下来试一试,在这过程中,发现一些作者在环境配置方面未提到的细节并在requirements.txt中进行了完善,可以说是手把手教你运行这个目标检测模型。

完善后的模型文件如下: https://download.csdn.net/download/qq_40344790/62403360

该代码基于NanoDet项目进行小裁剪,专门用来实现Python语言、PyTorch 版本的代码,下载直接能使用,支持图片、视频文件、摄像头实时目标检测。

用于目标检测,模型小,检测速度快速,适合没GPU显卡的嵌入式设备运行,比如“树莓派”、ARM开发板、嵌入式开发板。

原文链接

创建pip虚拟环境
创建python虚拟环境用于安装依赖包并激活环境:

python -m venv Virtual-NanoDet
source myvenv/bin/activate

以上。